
CHAPTER I 1  
THE THICK- W M L  CYLINDER 

11 .I BASIC RELATIONS 

In this section, we derive basic relations for the axisymmetric deformation of a thick-wall 
cylinder. Thick-wall cylinders are used widely in industry as pressure vessels, pipes, gun 
tubes, etc. In many applications the cylinder wall thickness is constant and the cylinder is 
subjected to a uniform internal pressure pl, a uniform external pressurep2, an axial load P, 
and a temperature change AT (measured from an initial uniform reference temperature; 
see Section 3.4) (Figure 11.1). Often the temperature change AT is a function of the radial 
coordinate r only. 

Under such conditions, the deformations of the cylinder are symmetrical with 
respect to the axis of the cylinder (axisymmetric). Furthermore, the deformations at a 
cross section sufficiently far removed from the junction of the cylinder and its end caps 
(Figure 1 1.1) are practically independent of the axial coordinate z. In particular, if the cyl- 
inder is open (no end caps) and unconstrained, it undergoes axisymmetric deformations 
owing to pressures p1 and p 2  and temperature change AT = AT(r), which are independent 
of z .  If the cylinder’s deformation is constrained by supports or end caps, then in the vicin- 
ity of the supports or junction between the cylinder and end caps, the deformation and 
stresses will depend on the axial coordinate z. 

For example, consider a pressure tank formed by welding together hemispherical 
caps and a cylinder (Figure 11.2). Under the action of an internal pressure pl, the tank 
deforms as indicated by the dotted inside boundary and the long dashed outside boundary 
(the deformations are exaggerated in Figure 11.2). If the cylinder were not constrained by 
the end caps, it would be able to undergo a larger radial displacement. However, at the 
junctions between the hemispherical caps and cylinder, the cylinder displacement is con- 
strained by the stiff hemispherical caps. Consequently, the radial displacement (and hence 
the strains and stresses) at cylinder cross sections near the end cap junctions differs from 
those at sections far removed from the end cap junctions. 

In this section, we consider the displacement, strains, and stresses at locations far 
removed from the end caps. The determination of deformations, strains, and stresses near 
the junction of the thick-wall end caps and the thick-wall cylinder lies outside the scope of 
our treatment. This problem often is treated by experimental methods, since its analytical 
solution depends on a general three-dimensional study in the theory of elasticity (or plas- 
ticity). For thin-wall cylinders, the stress near the end cap junctions may be estimated by 
the procedure outlined in Section 10.7 (see Problem 10.49). 

Consequently, the solution presented in this chapter for thick-wall cylinders is appli- 
cable to locations sufficiently far from the end cap junctions where the effects of the 
constraints imposed by the end caps are negligible. The solution is also applicable to 
thick-wall cylinders that do not have end caps, so-called open cylinders. Since only axially 
symmetrical loads and constraints are admitted, the solution is axisymmetrical, that is, a 
function only of radial coordinate r. 
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We use cylindrical coordinates r, 6, z for radial, circumferential, and axial directions. Let 
the cylinder be loaded as shown in Figure 1 1.1. For analysis purposes, we remove a thin m u -  
lus of thickness dz from the cylinder (far removed from the end junctions) by passing two 
planes perpendicular to the z axis, a distance dz apart (Figure 1 1 . 3 ~ ) .  The cylindrical volume 
element dr (r d 6 )  dz shown in Figure 11.3b is removed from the annulus. Because of radial 
symmetry, no shear stresses act on the volume element and normal stresses are functions of r 
only. The nonzero stress components are principal stresses o,, oee, and 0,. The distributions 
of these stresses through the wall thickness are determined by the equations of equilibrium, 
compatibility relations, stress-strain-temperature relations, and material response data. 

11 .I .I Equation of Equilibrium 

We neglect body force components. Hence, the equations of equilibrium for cylindrical 
coordinates (Eqs. 2.50) reduce to the single equation 

(11.1) 

11 .I .2 Strain-Displacement Relations 
and Compatibility Condition 

The straindisplacement relations for the thick-walled cylinder (Eqs. 2.85) yield the three 
relations for extensional strains 

(11.2) 

where u = u(r, z )  and w = w(r, z )  denote displacement components in the r and z directions, 
respectively. At sections far removed from the ends, the dependency on z in u and w is con- 
sidered to be small. Hence, at sections far from the ends, the shear strain components are 

(a)  (b) 

FIGURE 11.3 Stresses in thick-wall cylinder. (a) Thin annulus of thickness dz. (The zaxis is per- 
pendicular to the plane of the figure.) (b) Cylindrical volume element of thickness dz. 
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zero because of radial symmetry; furthermore, we assume that E,, is constant. Eliminating 
the displacement u = u(r) from the first two of Eqs. 1 1.2, we obtain 

(11.3) 

Equation 11.3 is the strain compatibility condition for the thick-wall cylinder. 

1 1.1.3 Stress-Strain-Temperature Relations 

The material of the cylinder is taken to be isotropic and linearly elastic. The stress-strain- 
temperature relations are (see Eqs. 3.38) 

E,, = 1 [or, - V (  Oee + oZz) + a AT 
E 1 

(11.4) 

where E,  v,  and a denote the modulus of elasticity, Poisson’s ratio, and the coefficient of 
linear thermal expansion, respectively. The term AT in Eq. 11.4 represents the change in 
temperature measured from a uniform reference temperature (constant throughout the cyl- 
inder initially); see Boresi and Chong (2000). 

1 1.1.4 Material Response Data 

For a cylinder made of isotropic linearly elastic material, the material response data are 
represented by the results of tests required to determine the elastic constants (modulus of 
elasticity E and Poisson’s ratio V )  and the coefficient of linear thermal expansion a. To 
determine the maximum elastic loads for the cylinder, the material data must include 
either the yield stress Y obtained from a tension test or the shear yield stress zY obtained 
from a torsion test of a hollow thin-wall tube. 

11.2 
FROM ENDS FOR A CYLINDER WITH CLOSED ENDS 

STRESS COMPONENTS AT SECTIONS FAR 

In this section, we obtain expressions for the stress components o,, Oe,, o,,, for a cylin- 
der with closed ends; the cylinder is subjected to internal pressure pl, external pressure p2,  
axial load P, and temperature change AT (Figure 11.1). 

We may express Eq. 11.3 in terms of or,., Oge, o,, and their derivatives with respect 
to r, by substitution of the first two of Eqs. 11.4 into Eq. 11.3. Since E,, = constant, the last 
of Eqs. 11.4 may be used to express the derivative do,, /dr in terms of the derivatives of 
err, 0 8 0 ,  and AT with respect to r. By means of this expression, we may eliminate do,,/dr 
from Eq. 11.3 to rewrite Eq. 11.3 in terms of or,., 008, and derivatives of err, Oe,, and 
AT. Since the undifferentiated terms in O, and 0 8 0  occur in the form o,, - bee, Eq. 1 1 . 1  
may be used to eliminate O, - Gee. Hence, we obtain the differential expression 
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d r  1 - v  
(11.5) 

Incorporated in Eq. 1 1.5 is the equation of equilibrium, Eq. 1 1.1, the strain compatibility 
equation, Eq. 11.3, and the stress-strain-temperature relations, Eqs. 1 1.4. 

Integration of Eq. 1 1.5 yields the result 

a E A T  - fs,,+Ogg+- - 2 c 1  
1 - v  

(11.6) 

where 2C1 is a constant of integration (the factor 2 is included for simplicity of form in 
subsequent expressions). Elimination of the stress component b e e  between Eqs. 1 1.1 and 
1 1.6 yields the following expression for 6,: 

- ( r  d 2  0 ) = --+2Clr aE AT 
dr  " 1 - v  

Integration of Eq. 1 1.7 yields the result 

or, = - 2 aE i ATr dr + [ 1 -$]Cl + 2 
r (1-v) .  r 

(11.7) 

(11.8) 

where the integration is carried out from the inner radius a of the cylinder (Figure 1 1.1) to 
the radius r, and C2 is a second constant of integration. Substitution of Eq. 11.8 into Eq. 
1 1.6 yields the result 

By Eqs. 11.8 and 11.9, we obtain 

a E  AT 
1 - v  

or, + Ogg = 2c1 - - 

(11.9) 

(11.10) 

Equation 11.10 serves as a check on the computations (see Eq. 11.6). The constants of 
integration C1 and C2 are obtained from the boundary conditions orr = -pl at r = a and 
or, = -p2 at r = b (Figure 1 1.1). Substituting these boundary conditions into Eq. 1 1.8, we 
find 

f b 1 
2 

- p , b  +- 1 - v  a E [  ATrdr  J , c, = - p l a  (1 1.1 1) 
b -a 

Hence, Eq. 1 1.10 may be written as 

(1 1.12) 
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To obtain o,,, we integrate each term of the last of Eqs. 1 1.4 over the cross-sectional 
area of the cylinder. Thus, we have 

I ~ ~ , 2 a r d r  = 1 oz,2ardr - 2 v y  - Oee+ Orr 2ar dr + AT 2zr dr (11.13) 
b 

E E 2 
U U a 

For sections far removed from the end section, E,, is a constant, and the integral of o,, 
over the cross-sectional area is equal to the applied loads. Hence, because of pressures p 1  
and p2 and axial load P applied to an end plate (Figure 11.4), overall equilibrium in the 
axial direction requires 

2 2 0,,2ardr = P + a ( p l a  -p ,b  ) (11.14) 

If there is no axial load P applied to the closed ends, P = 0. 
Since the temperature change AT does not appear in Eq. 11.14, the effects of tem- 

perature are self-equilibrating. With Eqs. 11.12-1 1.14, the expression for E,, at a section 
far removed from the ends can be written in the form 

b 

‘zz(c1osed end) - - 1-2v  (Pla 2 -P,b 2 ) +  P + z j A T r d r  2 2  (11.15) 
E(b - a  ) a(b - a  ) E  b - a  

Substitution of Eq. 11.15 into the last of Eqs. 11.4, with Eq. 11.12, yields the following 
expression for o,, for a section far removed from the closed ends of the cylinder: 

2 2 b 

--+ a E  AT 2 a E  IATr dr(11.16) - Pla -P,b + P 
2 2  2 2  

z ( b  - a )  ( 1 - W b  - a  
Ozz(c1osed end) - 2 2  b - a  

11 2.1 Open Cylinder 

If a cylinder has open ends and there is no axial load applied on its ends, overall equilib- 
rium of an axial portion of the cylinder (Figure 1 1.5) requires that 

P2 

FIGURE 11.4 Axial equilibrium of closed-end cylinder. 
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11.5 Self-equilibrating axial stress distribution in an open cylinder. 

b 

~ 2 w o , , d z  = 0 ( 1 1.17) 
U 

Then,byEqs. 11.12, 11.13,andll.l7(alsobyEqs. 11.14, 11.15,andll.l7),theexpres- 
sion for E,, may be written in the form 

- 
‘,,(open end) - (b2-a2)E + 2 1  b - a  A 1 r a r  

and for o,,, we obtain, by Eqs. 11.4, 11.12, and 11.18, 

U 

- ATr dr - AT aE 
Ozz(open end) - cv 

- a  

(1 1.18) 

( 1 1.19) 

We note, by Eq. 11.19, that if the temperature change AT = 0, then o,, = 0. However, E, ,  # 
0 (see Eq. 11.18) when the Poisson ratio v # 0. Note that if p 1  = p 2  = P = 0 (temperature 
change still occurs), Eqs. 11.15 and 11.16 are identical to Eqs. 11.18 and 11.19, respec- 
tively. 

1 1.3 STRESS COMPONENTS AND RADlAL 
DISPLACEMENT FOR CONSTANT TEMPERATURE 

1 1.3.1 Stress Components 

In the absence of temperature change, we set AT = 0. Then Eqs. 11.8-1 1.1 1 and 11.16 can 
be used to obtain the following expressions for the stress components in a closed cylinder 
(cylinder with end caps): 

(1 1.20) 
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2 2 

(1 1.21) P l a  - P , b  + a2b2 
0 8 ,  = 2 2  2 2 2 ( p 1 - p 2 )  

b - a  r ( b  - a )  

2 2 

= constant (1 1.22) P l a  - P , b  + 

0 2 2  = 2 2  2 2  b - a  n(b - a )  

(11.23) 

For an open cylinder in the absence of axial force P, o, = 0 by Eq. 11.19 with AT = 0. 
Since the sum orr + 000 and stress 0, are constants through the thickness of the wall of the closed 
cylinder, by Eq. 11.13 or 1 1.15, we see that eZz is constant (extension or compression). 

1 1.3.2 Radial Displacement for a Closed Cylinder 

For no temperature change, AT = 0. Then the radial displacement u for a point in a thick- 
wall closed cylinder (cylinder with end caps) may be obtained by the second of Eqs. 11.2, 
the second of Eqs. 11.4, and Eqs. 11.20-1 1.22. The resulting expression for u is 

(11.24) 

2 n 
+ ( 1  + v ) a 2 b 2  

r 

1 I .3.3 Radial Displacement for an Open Cylinder 

Of special interest are open cylinders (cylinders without end caps), since an open inner 
cylinder is often shrunk to fit inside an open outer cylinder to increase the strength of the 
resulting composite cylinder. For an open cylinder, in the absence of temperature changes 
(AT = 0), Eq. 11.19 yields o,, = 0. Hence, proceeding as for the closed cylinder, we obtain 

2 2 
2 2  ( 1 - W P l a  - P , b  ) 

(11.25) E ( b  - a  ) 
- 

'(open end) - 

( P l  - P 2 ) ]  
( 1  + v)a2b2 

2 r 
+ 

Equation 1 1.25 gives the radial displacement of any point at radius r in an open cylinder. For internal 
pressure only, p2 = 0. Then, by Eq. 1 1.25, the radial cllsplacement at the inner surface r = a is 

a P i  a2+b2 u, = - - + v  
(b2-u2 1 
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EXAMPLE 11 .I 
Stresses in a 

Hollow Cylinder 

Solution 

EXAMPLE 11.2 
Stresses and 

Deformations in 
a Hollow Cylinder 

Solution 

Similarly, for external pressure only, p 1  = 0, and the radial displacement at the outer sur- 
face r = b is 

A thick-wall cylinder is made of steel (E = 200 GPa and v = 0.29), has an inside diameter of 20 mm, 
and has an outside diameter of 100 mm. The cylinder is subjected to an internal pressure of 300 MPa. 
Determine the stress components Or, and 008 at r = a = 10 mm, r = 25 mm, and r = b = 50 mm. 

The external pressure p 2  = 0. Equations 11.20 and 11.21 simplify to 

a 2 2  ( r  - b )  2 

e r r  = PI 2 2 2 
r ( b  - a )  

a2(r2 + b2)  

r ( b  - a  ) 
O80' p1 2 2 2 

Substitution of values for r equal to 10 mm, 25 mm, and 50 mm, respectively, into these equations 
yields the following results: 

~ ~~~ 

r =  10 mrn r =  25 rnm r=50mrn Stress 

0, -300.0 MPa -37.5 MPa 0.0 
O00 325.0 MPa 62.5 MPa 25.0 MPa 

A thick-wall closed-end cylinder is made of an aluminum alloy (E = 72 GPa and v = 0.33), has an 
inside diameter of 200 mm, and has an outside diameter of 800 mm. The cylinder is subjected to an 
internal pressure of 150 MPa. Determine the principal stresses, maximum shear stress at the inner 
radius (r = a = 100 mm), and the increase in the inside diameter caused by the internal pressure. 

The principal stresses are given by Eqs. 11.2C11.22. For the conditions that p2  = 0 and r = a, these 
equations give 

a'- b' 

b - a  
or,. = = -pl = -150MPa 

= 10MPa a 
Ozz = = 150 

b - a  400' - 10O2 

The maximum shear stress, given by Eq. 2.39, is 
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EXAMPLE 11.3 
Stresses in a 

Composite 
Cylinder 

Solution 

The increase in the inside diameter caused by the internal pressure is equal to twice the radial dis- 
placement given by Eq. 11.24 for the conditions p2  = P = 0 and r = a. Thus, 

' ( r = a )  - - p l a  2 2  [ (1-2v)aZ+( l+v)b  
E(b  - a  ) 

- - 

= 0.3003 mm 

150(100) 
72,000(4002 - loo2) 

[( 1 - 0.66) loo2 + (1 + 0.33)400 

The increase in the inside diameter caused by the internal pressure is 0.6006 mm. 

Let the cylinder in Example 1 1.1 be a composite cylinder made by shrinking an outer cylinder onto 
an inner cylinder. Before assembly, the inner cylinder has inner and outer radii of a = 10 mm and q = 
25.072 mm, respectively. Likewise, the outer cylinder has inner and outer radii of c, = 25.000 mm 
and b = 50 mm, respectively. Determine the stress components Or, and 0 8 8  at r = a = 10 mm, r = 
25 mm, and r = b = 50 mm for the composite cylinder. For assembly purposes, the inner cylinder is 
cooled to a uniform temperature TI and the outer cylinder is heated to a uniform temperature T2 to 
enable the outer cylinder to slide freely over the inner cylinder. It is assumed that the two cylinders 
will slide freely if we allow an additional 0.025 mm to the required minimum difference in radii of 
0.072 mm. Determine how much the temperature (in degrees Celsius) must be raised in the outer cyl- 
inder above the temperature in the inner cylinder to freely assemble the two cylinders. a = 
O.ooOo117/"C. 

After the composite cylinder has been assembled, the change in stresses caused by the internal pressure 
p 1  = 300 MPa is the same as for the cylinder in Example 1 1.1. These stresses are added to the residual 
stresses in the composite cylinder caused by shrinking the outer cylinder onto the inner cylinder. 

The initial difference between the outer radius of the inner cylinder and the inner radius of the 
outer cylinder is 0.072 mm. After the two cylinders have been assembled and allowed to cool to their 
initial uniform temperature, a shrink pressure p s  is developed between the two cylinders. The pressure 
p s  is an external pressure for the inner cylinder and an internal pressure for the outer cylinder. The 
magnitude of p s  is obtained from the fact that the sum of the radial displacement of the inner surface 
of the outer cylinder and the radial displacement of the outer surface of the inner cylinder must equal 
0.072 mm. Hence, by Eq. 11.25, 

'I 2 'i 2 co [( 1 - v)psco + (1 + v)p,b2] - [- (1 - v)p,ci - ( 1 + v)p,a = 0.072 
E(b2  - c:) E(Ci - a  ) 

Solving for p,,  we obtain 

p ,  = 189.1 MPa 

The pressurep, produces stresses (residual or shrink-fit stresses) in the nonpressurized composite cylin- 
der. For the inner and outer cylinders, the residual stresses or, and 080 at the inner and outer radii are 
given by Eqs. 11.20 and 11.21. For the inner cylinder, p1 = 0, p2  = p,. a = 10 mm, and b = 25 mm. For 
the outer cylinder, p1 = p,,  p2  = 0, a = 25 mm, and b = 50 mm. The residual stresses are found to be 

R R 
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Inner cylinder Outer cylinder 

Residual stress r=10mm r=25mm r =  25 mm r =  50 mm 

0 -189.1 MPa -189.1 MPa 0 
R 

Orr 

Oao -450.2 MPa -261.1 MPa 315.1 MPa 126.0 MPa 
R 

The stresses in the composite cylinder after an internal pressure of 300 MPa has been applied are 
obtained by adding these residual stresses to the stresses calculated in Example 1 1.1. Thus, we find 

Inner cylinder Outer cylinder 

Residual stress r =  10 mm r=25mm r =  25 mm r=50mm 

Orr -300.0 MPa -226.6 MPa -226.6 MPa 0 

Oee -125.2 MPa -198.6 MPa 377.7 MPa 151.0 MPa 

A comparison of the stresses for the composite cylinder with those for the solid cylinder in Exam- 
ple 1 1.1 indicates that the stresses have been changed greatly. The determination of possible improve- 
ments in the design of the open-end cylinder necessitates consideration of particular criteria of failure 
(see Section 11.4). 

To have the inner cylinder slide easily into the outer cylinder during assembly, the difference in 
temperature between the two cylinders is given by the relation 

0'097 = 331.6"C 0.072 + 0.025 - AT = T , - T ,  = 2 = - 
ra: 25(0.0000117) 

since for uniform temperatures T , ,  T2, we have or, = bee = oZz = 0 in each cylinder, and since then Eqs. 
11.2 and 11.4 yield e8e = u/r= a A T ,  where r=co  =%. 

1 1.4 CRITERIA OF FAILURE 

The criterion of failure used in the design of a thick-wall cylinder depends on the type of 
material in the cylinder. As discussed in Section 4.3, the maximum principal stress crite- 
rion should be used in the design of members made of brittle isotropic materials if the 
principal stress of largest magnitude is a tensile stress. Either the maximum shear-stress or 
the octahedral shear-stress criterion of failure should be used in the design of members 
made of ductile isotropic materials (see Section 4.4). 

1 1.4.1 Failure of Brittle Materials 

If a thick-wall cylinder is made of a brittle material, the material property associated with 
fracture is the ultimate tensile strength ou. At the failure loads, the maximum principal 
stress in the cylinder is equal to ou. If the maximum principal stress occurs at the con- 
strained ends of the cylinder, it cannot be computed using the relations derived in Sections 
11.2 and 11.3. At sections far removed from the ends, the maximum principal stress is 
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either the circumferential stress bee(,. = or the axial stress ozz. If the cylinder is loaded so 
that the magnitude of the maximum compressive principal stress is appreciably larger than 
the magnitude of the maximum tensile principal stress, the appropriate criterion of failure 
to be used in design is uncertain. Such conditions are not considered in this book. 

1 1.4.2 Failure of Ductile Materials 

If excessive elastic deformation is not a design factor, failure of members made of ductile 
materials may be initiated as the result of general yielding or fatigue. Failure of these 
members is predicted by either the maximum shear-stress criterion of failure or the octahe- 
dral shear-stress criterion of failure. 

General Yielding Failure 
Thick-wall cylinders that are subjected to static loads or peak loads only a few times dur- 
ing the life of the cylinder are usually designed for the general yielding limit state. General 
yielding may be defined to occur when yielding is initiated in the member at some point 
other than at a stress concentration. This definition is used in examples at the end of this 
section (see also Section 4.6). However, yielding may be initiated in the region of stress 
concentrations at the ends of the cylinder or at an opening for pipe connections. Yielding 
in such regions in usually highly localized and subsequent general yielding is unlikely. 
However, the possibility of failure by fatigue still may exist (see Chapter 16). General 
yielding sometimes is considered to occur only after the member has yielded over an 
extensive region, such as occurs with fully plastic loads. Fully plastic loads for thick-wall 
cylinders are discussed in Section 1 1.5. 

Fatigue Failure 
In practice, a thick-wall cylinder may be subjected to repeated pressurizations (loading 
and unloading) that may lead to fatigue failure. Since fatigue cracks often occur in the 
neighborhood of stress concentrations, every region of stress concentration must be con- 
sidered in the design. In particular, the maximum shear stress must be determined in the 
region of stress concentrations, since fatigue cracking usually originates at a point where 
either the maximum shear stress or maximum octahedral shear stress occurs. The equa- 
tions derived in Sections l l .2 and l l .3 cannot be used to compute the design stresses, 
unless the maximum stresses occur at sections of the cylinder far removed from end con- 
straints or other stress concentration regions. 

11.4.3 Material Response Data for Design 

If a member fails by general yielding, the material property associated with failure is the 
yield stress. This places a limit either on the value of the maximum shear stress, if the 
maximum shear-stress criterion of failure is used, or on the value of the octahedral shear 
stress, if the octahedral shear-stress criterion of failure is used. If the member fails by 
fatigue, the material property associated with the failure is the fatigue strength. For high 
cycle fatigue, both the maximum shear-stress criterion of failure and octahedral shear- 
stress criterion of failure are used widely in conjunction with the fatigue strength (see 
Chapter 16, Example 16.1). 

The yield stress and fatigue strength may be obtained by tests of either a tension spec- 
imen or hollow thin-wall tube. The values of these properties, as determined from tests of a 
hollow thin-wall tube in torsion, are found to lead to a more accurate prediction of the mate- 
rial response for thick-wall cylinders than the values obtained from a tension specimen. This 
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is because the critical state of stress in the cylinder is usually at the inner wall of the cylinder, 
and for the usual pressure loading it is essentially one of pure shear (as occurs in the torsion 
test) plus a hydrostatic state of stress. Since in many materials a hydrostatic stress does not 
affect the yielding, the material responds (yields) as if it were subjected to a state of pure 
shear. Consequently, if the material properties are determined by means of a torsion test of a 
hollow thin-wall tube, the maximum shear-stress criterion and octahedral shear-stress crite- 
rion predict failure loads that differ by less than 1% for either closed or open cylinders. The 
difference in these predictions may be as much as 15.5% if the material properties are 
obtained from tension specimen tests (Section 4.4). These conclusions pertain in general to 
most metals. However, the yield of most plastics is influenced by the hydrostatic state of 
stress. Hence, for most plastics, these conclusions may not generally hold. 

The deviatoric state of stress (see Section 2.4) in a closed cylinder is identical to that 
for pure shear. Hence, the maximum shear-stress and the octahedral shear-stress criteria of 
failure predict nearly identical factors of safety for the design of a closed cylinder if the 
yield stress for the material is obtained from torsion tests of hollow thin-wall tubes. Let the 
shear yield stress obtained from a torsion test of a thin-wall hollow tube specimen be des- 
ignated as zy. If the maximum shear stress for the inner radius of a closed cylinder is set 
equal to zy, the pressure p y  required to initiate yielding is obtained. (The reader is asked to 
derive the formula for pr in Problem 1 1.17.) For the special case of a closed cylinder with 
internal pressure only and with dimensions b = 2a, the yield pressure is found to be p y  = 
0.75 zy; the corresponding dimensionless stress distribution is shown in Figure 1 1.6. 

1 1.4.4 Ideal Residual Stress Distributions 
for Composite Open Cylinders 

It is possible to increase the strength of a thick-wall cylinder by introducing beneficial 
residual stress distributions. The introduction of beneficial residual stresses can be accom- 
plished in several ways. One method consists of forming a composite cylinder from two or 
more open cylinders. For example, in the case of two cylinders, the inner cylinder has an 
outer radius that is slightly larger than the inner radius of the outer cylinder. The inner cyl- 
inder is slipped inside the outer cylinder after first heating the outer cylinder and/or 

FIGURE 11.6 Stress distributions in a closed cylinder at initiation of yielding ( b  = 2a). 
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cooling the inner cylinder. When the cylinders are allowed to return to their initially equal 
uniform temperatures (say, room temperature), a pressure (the so-called shrink pressure) is 
created between the cylinder surfaces in contact. This pressure introduces residual stresses 
in the cylinders. As a result, the strength of the composite cylinder under additional inter- 
nal and external pressure loading is increased (Example 11 S). For more than two cylin- 
ders this process is repeated for each cylinder that is added to form the composite cylinder. 

A second method for introducing residual stresses consists of pressurizing a single 
cylinder until it deforms inelastically to some distance into the wall from the inner surface 
(a process called autofrettage). When the pressure is removed, a beneficial residual stress 
distribution remains in the cylinder (see Section 11 S). 

For a composite cylinder formed by two cylinders under a shrink fit and subject to 
internal pressurepl, the most beneficial residual stress distribution is that which results in the 
composite cylinder failing (yielding or fracturing) simultaneously at the inner radii of the 
inner and outer cylinders. Consider, for example, a composite cylinder formed by inner and 
outer cylinders made of a brittle material whose stress-strain diagram remains linear up to 
its ultimate strength a,. The inner cylinder has inner radius rl and outer radius 1.5-1 + (i.e., 
the outer radius is slightly larger than 1 .5rl). The outer cylinder has an inner radius of 1.51-1 
and outer radius of 3rl. See Figure 11.7. Fracture of the brittle material occurs when the 
maximum principal stress reaches the ultimate strength a,. Since the maximum principal 
stress in the composite cylinder is the circumferential stress component for the most 
beneficial residual (dimensionless) stress distribution (Figure 11.7a), failure of the compos- 
ite cylinder occurs when oee= a,, simultaneously at the inner radii of the inner and outer 
cylinders (Figure 11.7b). The ideal residual stress distribution requires a specific difference 
between the inner radius of the outer cylinder and the outer radius of the inner cylinder, 
which produces a shrink pressure ps  (see Problem 11.24). This shrink pressure produces a 
residual stress distribution (Figure 11.7~)  such that the application of an internal pressure p1 
produces the (dimensionless) stress distribution of Figure 11.7b at failure. 

FIGURE 11.7 Stress distributions in composite cylinder made of brittle material that fails at 
inner radius of both cylinders simultaneously. (a) Residual stress distributions. ( b )  Total stress 
distributions. 
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-1.0 1 

EXAMPLE 11.4 
Yield Failure of 

Thick- Wall 
Cylinder 

Solution 

FIGURE 11.8 Stress distributions in composite cylinder made of ductile material that fails at 
inner radius of both cylinders simultaneously. (a) Residual stress distributions. (b) Total stress 
distributions. 

If the composite cylinder is made of a ductile metal, either the maximum shear- 
stress criterion of failure or the octahedral shear-stress criterion of failure can be used. For 
example, let the composite cylinder of Figure 11.8 be made of a ductile metal. Based on 
the maximum shear-stress criterion of failure, the ideal residual stress distribution result- 
ing from the shrink pressure p s  is shown in Figure 11.8~1. (In this case, the interference 
fit is different from the cylinder of Figure 11.7; see Problem 11.23.) For an internal pres- 
sure p1 at failure of the cylinder, yield occurs simultaneously at the inner radii of the inner 
and outer cylinders, and the associated dimensionless stress distribution is shown in 
Figure 1 1.8b. 

The thick-wall cylinder in Example 11.1 is made of a ductile steel whose general yielding failure is 
accurately predicted by the octahedral shear-stress yield criterion. Determine the minimum yield 
stress for the steel for a factor of safety of SF = 1.75. 

The stress components calculated in Example 11.1 are for a cylinder that has been designed with a 
factor of safety of SF = 1.75. Yielding impends in the cylinder when the internal pressure is increased 
to (SF)p ,  = 525 MPa. The yield stress Y for the steel is obtained by setting the Octahedral shear stress 
in the cylinder [when the pressure in the cylinder is (SF)p , ]  equal to the octahedral shear stress that 
occurs in a tension specimen made of the steel when the tension specimen axial stress is Y. The octa- 
hedral shear stress in the tension specimen is given by the relation (see Eq. 2.22) 

1 2 2 2 J5Y 
zoct = -Yl (Y-O)  3 + ( O - 0 )  + ( O - Y )  = - 3 
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~ The octahedral shear stress at any point in the thick-wall cylinder is given by the relation (see Eq. 2.22) 

EXAMPLE 11.5 
Yield of a 

Composite Thick- 
Wall Cylinder 

Solution 

For the open cylinder, the axial stress o,, is zero and the radial and circumferential stresses are 

orr = -1.75(300) = -525 MPa 

Oee = 1.75(325) = 568.8 MPa 

Substituting these stress components into Eq. (b) and setting Eq. (a) equal to Eq. (b), we obtain 

Y = -t/(568.8 1 + 525)2 + (525)2 + (568.8)2 = 947.5 MPa 
.h 

The inner and outer cylinders of the composite thick-wall cylinder in Example 11.3 are made of the 
same ductile steel as the cylinder in Example 11.4. Determine the minimum yield stress for the steel 
in the composite cylinder for a factor of safety of SF = 1.75. 

Note: Equations (a) and (b) in Example 11.4 are valid for this problem also. 

For the composite open cylinder, it is necessary to consider initiation of yielding for the inside of the 
inner cylinder, as well as for the inside of the outer cylinder. The axial stress o,, is zero for both cylin- 
ders. At the inside of the inner cylinder, the radial and circumferential stresses for a pressure (SF)p, are 

or, = (1.75)( 300) = -525 MPa 

Gee = (1.75)(325)-450.2 = 118.6 MPa 

Substituting these stress components into Eq. (b) and setting Eq. (a) equal to Eq. (b), we obtain 

1 Y = -J( 118.6 + 525)2 + (525)2 + (1 18.6)2 = 593.3 MPa h 
At the inside of the outer cylinder, the radial and circumferential stresses for a pressure (SF)pl are 

or, = -( 1.75)(37.5) - 189.1 = -254.7 MPa 

bee = (1.75)(62.5) + 315.1 = 424.5 MPa 

Substituting these stress components into Eq. (b) and setting Eq. (a) equal to Eq. (b), we find 

Y = -J(424.5 1 + 254.7)2 + (254.7)2 + (424.5)2 
.h 

= 594.3 MPa > 593.3 MPa 

For the composite cylinder, the yield stress should be at least Y = 594.3 MPa. An ideal design for a 
composite cylinder should cause the required yield stress to be the same for the inner and outer cylin- 
ders. (Note that the above design is nearly ideal.) 

A comparison of the required yield stress for the single cylinder in Example 11.4 and the required 
yield stress for the composite cylinders indicates the advantage of the composite cylinder. The yield 
stress of the single cylinder material must be 59.4% greater than that of the composite cylinder, if 
both cylinders are subjected to the same initial pressure and are designed for the same factor of safety 
against initiation of yielding. 
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11.5 FULLY PLASTIC PRESSURE 
AND AUTOFRElTAGE 

Thick-wall cylinders made of ductile material can be strengthened by introducing benefi- 
cial residual stress distributions. In Sections 11.3 and 11.4, it was found that beneficial 
residual stress distributions may be produced in a composite cylinder formed by shrinking 
one cylinder onto another. Beneficial residual stress distributions may also be introduced 
into a single cylinder by initially subjecting the cylinder to high internal pressure so that 
inelastic deformations occur in the cylinder. As a result, an increase in the load-carrying 
capacity of the cylinder occurs because of the beneficial residual stress distributions that 
remain in the cylinder after the high pressure is removed. The residual stress distribution 
in the unloaded cylinder depends on the depth of yielding produced by the high pressure, 
the shape of the inelastic portion of the stress-strain diagram for loading of a tensile spec- 
imen of the material, and the shape of the stress-strain diagram for unloading of the tensile 
specimen followed by compression loading of the specimen. If the material in the cylinder 
is a strain-hardening material, a part (usually, a small part) of the increase in load-carrying 
capacity is due to the strengthening of the material, resulting from strain hardening of the 
material. If the material exhibits a flat-top stress-strain diagram at the yield point (i.e., 
elastic-perfectly plastic), all the increase in load-carrying capacity is due to the beneficial 
residual stress distribution. 

The process of increasing the strength of open and closed cylinders by increasing 
the internal pressure until the cylinder is deformed inelastically is called uutofrettuge. 
The beneficial effect of the autofrettage process increases rapidly with the spread of 
inelastic deformation through the wall thickness of the cylinder. Once yielding has 
spread through the entire wall thickness, any further improvement in load-carrying 
capacity resulting from additional inelastic deformation is due to strain hardening of the 
material. The minimum internal pressure p1 required to produce yielding through the 
wall of the cylinder is an important pressure to be determined, since most of the increase 
in load-carrying capacity is produced below this pressure, and the deformation of the 
cylinder remains small up to this pressure. For the special case where the stress-strain 
diagram of the material is flat-topped at the yield point the internal pressure p 1  is 
called the fully plastic pressure p p  

We derive the fully plastic pressure by assuming that the maximum shear-stress cri- 
terion of failure is valid. If we assume that o,, is the intermediate principal stress (orr < 
o,, < Dee) for the cylinder, (Tee - or, = 22,, where zy is the shear yield stress. This result 
may be substituted into the equation of equilibrium, Eq. 1 1.1, to obtain 

do,, = 5 d r  
r 

(11.26) 

Integration yields 

or, = 2 ~ ~ l n r  + C (11.27) 

The constant of integration C is obtained from the boundary condition that or, = -p2 when 
r = b. Thus, we obtain 

b 
r or, = -2zY In- - p2  (11.28) 
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which describes the radial stress distribution at the fully plastic pressure pp. The magni- 
tude of pp is given by Eq. 1 1.28 since the internal pressure is then p1 = pp = -err at r = a.  
Thus, we obtain 

b 
a 

p p  = 2ZY In- +p2 (11.29) 

In practice, p2 is ordinarily taken equal to zero, since for p2 = 0 the required internal pres- 
sure p1 is smaller than for nonzero p2. The circumferential stress distribution for the cylin- 
der at the fully plastic pressure is obtained by substituting Eq. 1 1.28 into the relation Oge - 
a,, = 22, to obtain 

(1 1.30) 

If the material in the cylinder is a Tresca material, that is, a material satisfying the 
maximum shear-stress criterion of failure, zY = Y/2, and the fully plastic pressure given by 
Eq. 1 1.29 is valid for cylinders subjected to axial loads in addition to internal and external 
pressures as long as o,, is the intermediate principal stress, that is, (T, < (T,, < Dee. If the 
material in the cylinder is a von Mises material, that is, a material satisfying the octahedral 
shear-stress criterion of failure, 2, = Y/& (see column 4 of Table 4.2), the fully plastic 
pressure given by Eq. 1 1.29 is valid for closed cylinders subjected to internal and external 
pressures only. For this loading, the octahedral shear-stress criterion of failure requires 
that the axial stress be given by the relation 

(11.31) 

The proof of Eq. 1 1.3 1 is left to the reader. 
In many applications, the external pressure p2 is zero. In this case, the ratio of the 

fully plastic pressure pp (Eq. 1 1.29) to the pressure py that initiates yielding in the cylinder 
at the inner wall (see Problem 11.17) is given by the relation 

n 

(11.32) 

In particular, this ratio becomes large as the ratio b/a becomes large. For b = 2a, Eq. 1 1.32 
gives pp = 1 .85py; dimensionless radial, circumferential, and axial stress distributions for 
this cylinder are shown in Figure 11.9. A comparison of these stress distributions with 
those at initiation of yielding (see Figure 11.6) indicates that yielding throughout the wall 
thickness of the cylinder greatly alters the stress distributions. If the cylinder in Figure 
1 1.9 unloads elastically, the residual stress distributions can be obtained by multiplying 
the stresses in Figure 1 1.6 by the factor 1.85 and subtracting them from the stresses in Fig- 
ure 11.9. For instance, the residual circumferential stress Oee at the inner radius is calcu- 
lated to be OF0 = - 1 . 7 2 ~ ~  This maximum circumferential residual stress can be 
expressed in terms of the tensile yield stress Y as follows: for a Tresca material Ote = 
-0.86Y and for a von Mises material bte. = -0.99Y. However, one cannot always rely on 
the presence of this large compressive residual stress in the unloaded cylinder. In particu- 
lar, all metals behave inelastically (because of the Bauschinger effect) when the cylinder is 
unloaded, resulting in a decrease in the beneficial effects of the residual stresses. For 

R 
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I A closed cylinder has an inner radius of 20 mm and an outer radius of 40 mm. It is made of steel that 
1 has a yield stress of Y = 450 MPa and obeys the von Mises yield criterion. 

(a) Determine the fully plastic internal pressurepp for the cylinder. 

(b) Determine the maximum circumferential and axial residual stresses when the cylinder is unloaded 
from pp, assuming that the values based on linear elastic unloading are decreased by 50% because of 
inelastic deformation during unloading. 

(c) Assuming that the elastic range of the octahedral shear stress has not been altered by the inelastic defor- 
mation, determine the intemal pressure p ,  that can be applied to the cylinder based on a factor of safety 
SF = 1.80. For SF = 1.80, compare this result with the pressurep, for a cylinder without residual stresses. 

EXAMPLE 11.6 
Fully Plastic 

Pressure for a 
Cylinder 

Solution 

-1.5k 

FIGURE 11.9 Stress distributions in a closed cylinder made of a von Mises material at fully 
plastic pressure ( b  = 2a). 

example, one investigation (Sidebottom et al., 1976) indicated that the beneficial effect of 
the residual stresses at the inside of the cylinder (when b = 2a) is decreased to about 50% 
of that calculated based on the assumption that the cylinder unloads elastically. Conse- 
quently, the cylinder will respond inelastically rather than elastically the next time it is 
loaded to the fully plastic pressure. 

(a) The shear yield stress zy for the von Mises steel is obtained using the octahedral shear-stress yield 
criterion 

The magnitude of pp is given by Eq. 1 1.29. Thus, we find 

b 40 
a 20 

pp = 2zy In- = 2(259.8) In- = 360.21 MPa 
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The circumferential and axial stresses at the inner radius for fully plastic conditions are given by Eqs. 
11.30and 11.31.Theyare 

Uee = 22, 1 -In- = 2(259.8) 1 -In- = 159.4 MPa ( 3 ( 3 
Gee+ o r r  - 159.4 - 360.2 = MPa 

2 
o,, = - - 

2 

(b) Assuming linearly elastic unloading, we compute the circumferential and axial residual stresses at 
r = a a s  

360.2(402 + 202) 

402 - 202 
= 159.4- R Pp(b2 + a2)  

2 2  
= 159.4- 

b -a 

= 440.9 MPa 
2 

~ b -a 

~ The actual residual stresses may be as much as 50% less than these computed values. Thus, 

u,, R = -100.4 - - PPa = -100.4 - 360.2(2o2) = 220.5 ma 
402 - 202 2 2  

~ 

I 
I 
I 
I 

I R 

uee R = OSO(40.9) = -220.4 MPa 
I (a) 
I 
I 
I 
I 

ozz = 0.50(-220.5) = -110.2 MPa 

I (e) Yielding is initiated in the cylinder at a pressure (SF)pl  = 1 . 8 0 ~ ~ .  If the residual stresses are 
~ neglected, the stresses at the inner radius caused by pressure (SF)pl are 
I 
I 

I 
I 

I 

orr = - ( S F ) ( p I )  = -1.80~1 

= ( S F ) ( P ~ ) ~  b 2 + 2  = ( 1 . 8 0 ) ( ~ , ) ~  402 + 202 

b -a 40 -20 

= 3.000p1 

202 o,, = ( S F ) ( P , ) L  = (1.80)(P,)- 
2 

2 2  402 - 202 b - U  

= 0.6000p1 

The actual stresses at the inner radius are obtained by adding the residual stresses given by Eq. (a) to 
those given by Eqs. (b). Thus, 

or, = -1.80~1 

~ e e  = 3.oooOp1- 220.4 (c) 
u,, = 0.6000~1- 110.2 

The octahedral shear-stress yield condition requires that 

(4 2 2 2 - - -  J:' - : , / (oee-crr )  +(orr-oz,) +(oZZ-oee) 

Substituting the values for the stress components given by Eqs. (c) into Eq. (d), we find that 
I 
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p1 = 154.2MPa 

is the working internal pressure for the cylinder that was preloaded to the fully plastic pressure. Sub- 
stituting the values for the stress components given by Eqs. (b) into Eq. (d), we obtain the working 
internal pressure for the cylinder without residual stresses: 

p1 = 108.3 MPa 

Hence, the working pressure for the cylinder that is preloaded to the fully plastic pressure is 42.4% 
greater than the working pressure for the elastic cylinder without residual stresses. 

11.6 CYLINDER SOLUTION FOR TEMPERATURE 
CHANGE ONLY 

Consider the stress distribution in a thick-wall cylinder subjected to uniform internal and 
external pressures p1 and p2,  axial load P, and temperature change AT that depends on the 
radial coordinate r only. The stress distribution may be obtained from Eqs. 1 1.8-1 1.1 1 and 
11.16. The special case of constant uniform temperature was considered in Section 11.3. 
In this section, the case of a cylinder subjected to a temperature change AT = T(r), in the 
absence of pressures and axial load, is treated. If internal and external pressures and tem- 
perature changes occur simultaneously, the resulting stresses may be obtained by superpo- 
sition of the results of this section with those of Section 11.3. As in Section 11.3, the 
results here are restricted to the static, steady-state problem. Accordingly, the steady-state 
temperature change AT = T(r) is required input to the problem. 

1 1.6.1 Steady-State Temperature Change 
(Distribution) 

The temperature distribution in a homogeneous body in the absence of heat sources is 
given by Fourier’s heat equation 

pV2T = (11.33) 

in which p is the thermal diffusivity for the material in the body, where we consider T = 
AT to be the temperature change measured from the uniform reference temperature of the 
unstressed state, and t is the time. For steady-state conditions, dT/dt = 0, and Eq. 11.33 
reduces to 

at 

VLT = 0 

In cylindrical coordinates (r, 6 ,  z ) ,  Eq. 11.34 takes the form 

Since T is assumed to be a function of r only, Eq. 1 1.35 simplifies to 

(11.34) 

(11.35) 

d2T 1 dT -+ - -  = 0 
dr2 r d r  

(11.36) 
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The solution of Eq. 1 1.36 is 

T = C ,  Inr + C ,  (11.37) 

where C1 and C,  are constants of integration. With Eq. 11.37, the boundary conditions T = 
Tb for r = b and T = T, for r = a are used to determine C1 and C2. The solution of Eq. 11.37 
then takes the form 

(11.38) 

where 

1 1.6.2 Stress Components 

I fpl  = p 2  = P = 0, Eq. 11.38 can be used with Eqs. 11.8-11.11 and 11.16 to obtain stress 
components for steady-state temperature distributions in a thick-wall cylinder. The results 
are 

066 = (11.40) 

Thus, the stress distributions for linearly elastic behavior of a thick-wall cylin- 
der subjected to a steady-state temperature distribution are given by Eqs. 11.39-1 1.41. 
When To = T, - Tb is positive, the temperature T, at the inner radius is greater than the 
temperature Tb at the outer radius. For the case of positive To, dimensionless stress 
distributions for a cylinder with b = 2a are shown in Figure 11.10. For this case, the 
stress components Dee and o,, are compressive, so a positive temperature difference 
To is beneficial for a cylinder that is subjected to a combination of internal pressure p1 
and temperature since the compressive stresses resulting from To counteract tensile 
stresses resulting from pl.  The stresses in cylinders subjected to internal pressure pl,  
external pressure p 2 ,  axial load P, and steady-state temperature may be obtained as 
follows: The radial stress is given by adding Eq. 11.20 to Eq. 11.39, the circumferen- 
tial stress is given by adding Eq. 11.21 to Eq. 11.40, and the axial stress is given by 
adding Eq. 1 1.22 to Eq. 11.41. 
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d l  - v) -1 1 .o 

FIGURE 11.10 Stress distributions in a cylinder subjected to a temperature gradient ( b  = 2a). 

11.7 ROTATING DISKS OF CONSTANT THICKNESS 

Consider a circular disk of inner radius a, outer radius b, and constant thickness t << b 
(Figure 1 1 . 1 1 ~ ) .  Let the disk rotate with constant angular velocity w [rad/s] about an axis 
perpendicular to its plane at 0. For axially symmetric plane stress (oZz = 0), the stress- 
strain relations in polar coordinates are (see Section 3.4) 

(1 1.42) 

where we let T = AT be the change in temperature from a reference state, a is the coefficient 
of thermal expansion, E is the modulus of elasticity, and v is Poisson's ratio. The strain com- 
ponents err and €68 are related to the radial displacement u = U(Y)  by (see Eq. 11.2) 

FIGURE 11.1 I ( a )  Rotating disk geometry. (b)  Stresses on infinitesimal element. 
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(11.43) 

Substitution of Eqs. 1 1.43 into Eqs. 11.42 yields 

(11.44) 

Consider next the equilibrium condition for an element of the disk (Figure 
1 1.11 b). By equating the sum of forces in the radial r direction to the mass times the 
acceleration of the element, we obtain 

(o r r+dor , ) ( r+ rd f3 )z -or r ( rd f3 )d t -2oe6  t = - p r o  2 (rdrdf3)t  (a) 

where p is the mass per unit volume and y o 2  is the radial acceleration of the element. 
Neglecting higher-order terms in Eq. (a), we find 

dorr 1 2 - + +err - oee) = - p r o  dr 

Substitution of Eqs. 1 1.44 into Eq. 1 1.45 yields 
1 n 

d“u -+---- l d u  u - - - - p r o  (1-V”) 2 + ( I + v ) -  d ( a T )  
dr2 r d r  r2 E dr 

Rewriting the left side of Eq. (b), we have 

(1 1.45) 

d f d u  (1-v”) 2 d 
dr -[--(..)I r d r  = - E p r w  + (1 + v)-(ar) dr (1 1.46) 

Direct integration of Eq. 1 1.46 yields 

(1 1.47) c2 
2 

( l - v )  , . T d r + C l r + -  -I u = -  -pr o + 
8E r r 

where C1 and C2 are constants of integration. The constants C1 and C2 are determined by 
the boundary conditions at r = a and r = b (Figure 11.1 la). For example, with no forces 
applied at r = a and r = b, we have 

0,.,.=0 a t r = u  and r =  b 

Hence, by Eqs. 11.44 and Eq. 11.47, with T = 0, we find 

(1 1.48) 
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(1 1 S O )  (1 - v) 
r 8E 1 - v  

Substituting Eq. 1 1.49 into Eqs. 1 1.48 and solving for C1 and Cz, we obtain 

2 c, = (3 + - )(a2 + b2)p02 
8( 1 + v)E 

(3+v)( l -v2)  2 2 c2 = a b (PO2) 8( 1 - v)E 

(1 1.51) 

Then by Eqs. 1 1.49-1 1.5 1, we get 

3 + v  2 2[ a i r  2 2  $1 
orr = -pb o 1+-- 8 2 

(1 1.52) 

r 

2 (3+v)a  -(1+3v)r  

(3 + v)b2 
+-  

We see by the first of Eqs. 11.52 that or, = 0 for r = a and r = b. Also, 6, takes on a 
maximum value at r = @) (where dorr/dr = 0). This maximum value is given by 

(11.53) 

By the second of Eqs. 11.52, we find that b e e  is a maximum at r = a (at the inner edge of 
the disk), where 

(11.54) 

Hence, at the inner edge, (Crge),,, varies parabolically as a function of a/b. 
By Eqs. 11.53 and 11.54, we see that ( ~ r ~ ~ ) , ~  > ( C T , . ~ ) ~ ~  for all values of a and b. 

Also, by the second of Eqs. 11.52, we see that as a/b + 0, there is a very large increase in 
Cree near the inner edge of the disk (as r + a). Thus as a/b + 0 and r + a, by the second 
of Eqs. 1 1.52, we obtain 

(11.55) 

Equation 1 1.55 indicates that the stress Cree is increased due to the stress concentration of 
a small hole at the center of the disk. 

Alternatively, as a + b (as the disk becomes a thin ring), the second of Eq. 11.5 1 
gives 

(1 1.56) 2 2  
( + pb 
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EXAMPLE 11.7 
Rotating 

Solid Disk 

Solution 

This analysis shows that the stresses produced in rotating disks, for example in rotors of 
electrical generators and gas turbine engines, are proportional to the square of the periph- 
eral velocity bw. This fact limits the diameter of the disk or rotor so as not to exceed the 
material strength or working stress limits. 

Consider a solid disk of radius b subjected to an angular velocity w (Figure El 1.7). 

(a) Determine the polar coordinate stresses orr and nee in the disk as functions of p, v, r, b, and w. 
Let T = 0. 

(b) For temperature change T = 0, determine the maximum values of orr and oee and their locations. 

FIGURE E l  1.7 

(a) The boundary conditions for the disk are 

u = O  at r = O  

orr = 0 at r = b 

By Eq. 11.47 the general solution for the rotating disk is 

1 2 
= -- (' - )pr3w2 + ~ , r  + -c, 

8E 

By Eqs. 1 1.49 and 1 1 S O ,  the stresses are 

Hence, by the first of Eqs. (a) and Eq. (b), 

c2 = 0 (4 

Likewise, by Eq. (b) with C2 = 0, the first of Eqs. (c) and the second of Eqs. (a) yield 

( 3 + ~ ) ( l - V )  2 2 
Pb 8E 

c, = 

Consequently, by Eqs. (cHe), we obtain the stresses 
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EXAMPLE I 1.8 
Plastic 

Deformation of ii 
Rotating Dish 

Solution 

8 

- -1 
(b) Since r I b, then by Eqs. (f) or, and (Tee are both positive and increase as r + 0. Hence, at r = 0, 
the stresses approach their maximum values 

(8) 
3 + v  2 2 

(orr)max = = ~ p b  w 

Comparing Eq. (g) to Eq. 11.55, we see that the maximum stress in a solid disk, which occurs at its cen- 
ter, is one-half as large as the maximum stress resulting from the stress concentration at the edge of a 
small hole at the center of a disk. In other words, the stress concentration factor of the small hole is 2.0. 

A circular steel disk of inner radius a = 100 mm and outer radius b = 300 mm is subjected to a con- 
stant angular velocity w [rad/s] (Figure El 1.8). The steel has material properties Y = 620 MPa, E = 
200 GPa, v = 0.29, and p = 7.85 x lo3 kg/m3. Assume that the disk is in a state of plane stress (ozz = 
0) and that yield is governed by the maximum shear-stress criterion. Also, let the disk be traction free 
at r = a and r =  b, and let T = O .  

(a) Determine the angular velocity w y  at which yield in the disk is initiated. 

(b) Determine the angular velocity wp at which the disk is fully plastic; compare wp to my. 

FIGURE E l  1.8 

(a) Since ozz = 0 and 
mum shear-stress criterion is given by 

> or, for all values of a and b (see Eqs. 11.49 and 11.50), then the maxi- 

or 

(oee),, = Y = 620 MPa (b) 

Since the disk is traction free at r = a and r = b, the maximum value of (Tee is given by Eq. 11.54 as 
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With the given data, Eqs. (b) and (c) yield 

or 

wy = 1021 rad/s 

(b) When the angular speed increases beyond my, a plastic zone develops at r = a (Figure El 1.8). In 
other words, the region a < r < r, will be plastic and the region rp < r < b will be elastic, where r = r, 
is the interface between the plastic and elastic regions. In the plastic region b g e  = Y, but orr is not 
known. However, we may obtain orr from the equilibrium condition (Eq. 11.45). Thus, with 0 0 8  = Y, 
we have in the plastic region 

' o r ,  1 Y 2 -+;or, = - - p r o  
dr r 

or, rewriting the left side, we have 

I d  Y 2 
- - ( rorr )  r dr = - - p r w  r 

Integration yields 

1 2 2  c orr = Y - - p r  w + -  
3 r 

For r = a, orr = 0; so by Eq. (f), 

(g) 
1 3 2  C = -pa w -aY 
3 

Equations (f) and (g) yield 

orr = Y 1--  - - p w  r -- ( 3 ; 2( f )  
When the disk is fully plastic, r = rp = b. Then, since 6, = 0 at r = b, Eq. (h) yields with the given 

data 

a = ( - + =  /T = 1350rad/s 6) 
p ( b  + a b + a )  

Comparing w p  to my, we have by Eqs. (e) and (i) 

In this case the speed at the fully plastic condition is 32% larger than that at yield. 
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EXAMPLE 11. 
Residual Stresst 

in a Dis 

Solutio 

For the disk of Example 11.8, after the fully plastic state is reached, the angular velocity is reduced to 
zero. Determine the residual stresses and (Oee)R in the disk. 

As noted in Section 6.10, the residual stresses may be obtained by subtracting the elastic stresses 
using w = wp from the fully plastic stresses. By Eqs. 11.52 with 0 = wp, the elastic stresses are 

By Example 11.8, the plastic stresses are 

= y - pw2 1 3  + v)(u2 + b 2 + a2b2 7)- ( 1  + 3 v ) r 2 ]  
8 

2 Since wp = 3Y/[p(b2 + ab + a2)], we see by the first of Eqs. (c) that ( o r r ) R  = 0 for r = a and r = b. 
Also, by eliminating wp from Eqs. (c), we may express the residual stresses in terms of Y as follows: 

3 

(Gee)R = Y 1 - 
3 

8(b2 + ab + a 2 )  
[ ( 3  + v)(a2 + b2 + ?)- ( 1  + 3 v ) r 2 ] }  I 

sence, with a = 100 mm, b = 300 mm, and v = 0.29, Eqs. (d) yield 

2 0.09230769 + 0.00854135 - -  
r 2 

- 0.05096154 + 1.7980769r - 
Y 

2 0.00854135 - -  (Oee)R - 0.05096154 + 5.39423077r - 
r Y 
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I As a check, the first of Eqs. (e) yields 

~ 

I 
~ r (Crr)Rl (U&?)R/ Y I(C&/ y -  (br r )R /  

I 
I 

TABLE E l  1.9 Residual Stress Ratios 

0.10 0.00000 -0.74923 0.74923 
0.11 -0.06055 -0.58966 0.52912 
0.12 -0.09923 -0.46451 0.36528 
0.13 -0.12331 -0.36328 0.23998 
0.14 -0.13735 -0.27909 0.14174 
0.15 -0.14435 -0.20728 0.06293 
0.16 -0.14628 -0.14459 0.00169 
0.17 -0.14451 -0.08869 0.05582 
0.18 -0.13998 -0.03789 0.10209 
0.19 -0.13336 0.00909 0.14245 
0.20 -0.12512 0.05320 0.17832 
0.21 -0.11562 0.09517 0.21079 
0.22 -0.10512 0.13557 0.24069 
0.23 -0.09380 0.17485 0.26865 
0.24 -0.081 80 0.21338 0.29518 
0.25 -0.06923 0.25144 0.32067 
0.26 -0.05617 0.28926 0.34543 

0.36971 0.27 -0.04267 0.32704 
0.28 -0.02879 0.36492 0.39372 
0.29 -0.01456 0.40305 0.41762 
0.30 0.00000 0.44154 0.44154 

for r = 100mm, =R = o 
Y 

for r = 300 mm, 

Values of the residual stresses are given in Table El  1.9 and a plot is shown in Figure El 1.9. Since 
o,, = 0, the maximum value of shear stress (see Eqs. 4.14 and 4.15) does not cause yielding upon 
unloading; that is, I (or,.)R - o,, I < Y,  I ( o B B ) R  - o,, I < K and I ( o e e ) R  - ( ~ J R  I <Y. 

0.25 I 

-0.75 -0'5Y 
FIGURE E l  1.9 Residual stress distribution. 
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PROBLEMS 

Section 11 -3 
11.1. For the hollow cylinder of Example 11.1, determine the 
radial displacements at the inner surface and the outer surface. 

11.2. For the hollow cylinder of Example 11.2, determine the 
principal stresses and the maximum shear stress at the outer 
surface and the increase of the outer diameter. 

11.3. An open thick-wall cylinder of inner radius a = 100 mm 
and outer radius b = 200 mm is subjected to an internal pressure 
p ,  = 200 MPa. 

a. Determine the stress components Or,. and 008 at r = 100 mm, 
r = 150 mm, and r = 200 mm. 

b. Sketch the distribution of orr and 008 through the wall of the 
cylinder. 
11.4. A long closed cylinder has an internal radius a = 100 mm 
and an external radius b = 250 mm. It is subjected to an internal 
pressure p ,  = 80.0 MPa ( p 2  = 0). Determine the maximum 
radial, circumferential, and axial stresses in the cylinder. 
11.5. Determine the radial and circumferential stress distribu- 
tions for the cylinder in Problem 1 1.4. 

11.6. Consider a 1-m length of the unloaded cylinder in Prob- 
lem 11.4 at a location in the cylinder some distance from the 
ends. What are the dimensions of this portion of the cylinder 
after p 1  = 80.0 MPa is applied? The cylinder is made of a steel 
for which E = 200 GPa and v = 0.29. 
11.7. A closed cylinder has an inside diameter of 20 mm and an 
outside diameter of 40 mm. It is subjected to an external pres- 
sure p2 = 40 MPa and an internal pressure of p ,  = 100 MPa. 
Determine the axial stress and circumferential stress at the 
inner radius. 
11.8. A composite cylinder has inner radius a, outer radius b, 
and interface radius c (Figure P11.8). Initially, the outer radius 
of the inner cylinder is larger than the inner radius of the outer 
cylinder by an amount 6. Show that after assembly the shrink- 
fit pressure is 

E 6  ( b  - C  ) ( c  - a  ) 
p s = c  [ 2 = 2 2 2 2 ]  2~ ( b  - a  ) 

where E is the modulus of elasticity of the cylinders and 6/c is 
the shrinkage factor. Hint: The increase of the inner radius of 
the outer cylinder plus the decrease in the outer radius of the 
inner cylinder produced byp, must be equal to 6. (See the solu- 
tion of Example 11.3.) 

11.9. In Problem 11.8 (Figure P11.8) let a = 100 mm, c = 200 
mm, and b = 300 mm. For steel cylinders (E = 200 GPa) and a 
shrinkage factor 6/c  = 0.001, determine the shrinkage-fit 
stresses at r = 100 mm, r = 150 mm, r = 250 mm, and r = 
300 mm. 

FIGURE P I  1.8 

11.10. An aluminum composite cylinder (E = 72 GPa and v = 
0.33) is made by shrinking an outer cylinder onto an inner cyl- 
inder (Figure P11.10). Initially the outer radius c of the inner 
cylinder is larger than the inner radius of the outer cylinder by 
an amount 6 = 0.125 mm (see Problem 11.8). The cylinder is 
subjected to an internal pressure pi = 200 MPa. Determine the 
stress in the inner cylinder at r = 150 mm and in the outer 
cylinder at r = 150 mm. 

FIGURE P11.10 

11.11. A composite aluminum alloy (E = 72.0 GPa and v = 
0.33) cylinder is made up of an inner cylinder with inner and 
outer diameters of 80 and 120+ mm, respectively, and an outer 
cylinder with inner and outer diameters of 120 and 240 mm, 
respectively. The composite cylinder is subjected to an internal 
pressure of 160 MPa. What must the outside diameter of the 
inner cylinder be if the Circumferential stress at the inside of the 
composite cylinder is equal to 130 MPa? 

11.12. What must the outside diameter of the inner cylinder 
be for the composite cylinder in Problem 11.1 1 if the maxi- 
mum shear stress at the inner radius of the inner cylinder is 
equal to the maximum shear stress at the inner radius of the 
outer cylinder? What are the values for the circumferential 
stress at the inside of the composite cylinder and the maxi- 
mum shear stress? 
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11.13. A gray cast iron (E = 103 GPa and v = 0.20) cylinder has 
an outside diameter of 160 mm and an inside diameter of 
40 mm. Determine the circumferential stress at the inner radius 
of the cylinder when the internal pressure is 60.0 MPa. 

11.14. Let the cast iron cylinder in Problem 11.13 be a compos- 
ite cylinder made up of an inner cylinder with inner and outer 
diameters of 40 and 80+ mm, respectively, and an outer cyiin- 
der with inner and outer diameters of 80 and 160 mm, respec- 
tively. What must the outside diameter of the inner cylinder be 
if the circumferential stress at the inside of the inner cylinder is 
equal to the circumferential stress at the inside of the outer cyl- 
inder? What is the magnitude of the circumferential stress at the 
inside of the composite cylinder? 

Section 11.4 

11.16. a. Derive the expression for the maximum shear stress 
in a thick-wall cylinder subjected to internal pressure p I ,  exter- 
nal pressure p2,  and axial load P, assuming that o,, is the inter- 
mediate principal stress, that is, orr < ozz < oee. 

b. Derive an expression for the limiting value of the axial load P 
for which the expression in part (a) is valid. 

11.17. Let o,, be the intermediate principal stress in a thick- 
wall cylinder (0, < o,, < oee). Using the maximum shear- 
stress criterion of failure, derive an expression for the internal 
pressure pr necessary to initiate yielding in the cylinder. The 
shear yield stress for the material is zy. 

11.18. For a closed cylinder subjected to internal pressure p 1  
only, show that the octahedral shear stress z,,~ at the inner 
radius is given by the relation 

11.15. A hollow steel hub (E = 200 GPa and v = 0.3), with an 
inner diameter of 100 mm and an outer diameter of 300 mm, is 
press-fitted over a solid steel shaft of diameter 100.125 mm. 
Determine the maximum principal stress in the shaft and in the 
hub. Ignore the stress concentration at the junction between the 
vertical sides of the hub and the shaft. See Figure P11.15. 

FIGURE P11.15 

a. the maximum shear-stress criterion of failure and 
b. the octahedral shear-stress criterion of failure 
11.22. A closed cylinder with inner and outer diameters of 30 
and 60 mm, respectively, is subjected to an internal pressure 
only. The cylinder is made of a brittle material having an ulti- 
mate strength of o,, = 160 MPa. The outer diameter has been 
gradually reduced as we move away from each end so that 
stress concentrations at the ends can be neglected. Determine 
the magnitude of p ,  based on a factor of safety of SF = 3.00. 
11.23. Two cylinders are slip-fitted together to form a compos- 
ite open cylinder. Both cylinders are made of a steel having a 
yield stress Y = 700 MPa. The inner cylinder has inner and outer 
diameters of 100 and 150+ mm, respectively. The outer cylin- 
der has inner and outer diameters of 150 and 300 mm, respec- 
tively. 

&plb2 

.&(b2-a2) 

a. Determine the sh r ink  pressure ps  and maximum internal 
pressure p1 that can be applied to the cylinder if it has been 
designed with a factor of safety of SF = 1.85 for simultaneous 
initiation of yielding at the inner radii of the inner and outer 
cylinders. Use the maximum shea-stress criterion of failure. 
b. Determine the outer diameter of the inner cylinder required 
for the design. For the steel 

11.24. Two cylinders are slip-fitted together to form a compos- 
ite open cylinder. Both cylinders are made of a brittle material 
whose stress-strain diagram is linear up to the ultimate strength 
ou = 480 The inner cylinder has inner and outer radii of 
50 and 75+ mm, respectively. The outer cylinder has inner and 
outer radii of 75 and 150 mm, respectively. Determine the 
shrink pressure p s  and maximum internal pressure p ,  that 
results in initiation of fracture simultaneously at the inner radii 
of both cylinders. Use the maximum principal stress criterion of 
failure. 

Zoct = 

11.19. A closed cylinder is made of a ductile steel that has a 
yield stress Y = 600 h4Pa. The inside diameter of the cylinder is 
80 mm. Determine the outside diameter of the cylinder if the 
cylinder is subjected to an internal pressure of p1 = 140 MPa 
and the cylinder is designed using a factor of safety of SF = 

11.20. Solve Problem 11.19 using the octahedral shear-stress 
criterion of failure. 

11.21. A closed cylinder with inner and outer radii of 60 and 
80 mm, respectively, is subjected to an internal pressure p 1  = 
30.0 MPa and an axial load P = 650 kN. The cylinder is made 
of a steel that has a yield stress of Y = 280 MPa. Determine the 
factor of safety SF used in the design of the cylinder based on 

= 2oo GPa and = o.29. 

.75 based on the maximum shear-stress criterion of failure. 

Section 11.5 

11.25. A thick-wall cylinder has an inside diameter of 180 mm 
and an outside diameter of 420 mm. It is made of steel having a 

yield stress of Y = 460 MPa and obeying the Tresca criterion. 
Determine the fully plastic pressure for the cylinder ifp2 = 0. 
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11.26. a. Determine the working pressure p ,  for the thick-wall 
cylinder in Problem 11.25 if it is designed with a factor of 
safety of SF = 3.00 based on the fully plastic pressure. 
b. What is the factor of safety based on the maximum elastic 
pressure pr? 

11.27. A composite open cylinder has an inner cylinder with 
inner and outer radii of 20 and 30 mm, respectively, and is 
made of a steel with yield stress Y ,  = 400 MPa. The outer cylin- 

Section 11.6 

11.29. An unloaded closed cylinder has an inner radius of 
100 mm and an outer radius of 250 mm. The cylinder is made 
of a steel for which a = 0.00001 17/"C, E = 200 GPa, and v = 
0.29. Determine the stress components at the inner radius for a 
steady-state temperature change with the temperature at the 
inner radius 100°C greater than the temperature at the outer 
radius. 

11.30. Let the steel in the cylinder in Problem 11.29 have a 
yield stress of Y = 500 MPa. Determine the magnitude of To 
necessary to initiate yielding in the cylinder based on the 

a. maximum shear-stress criterion of failure and 

b. octahedral shear-stress criterion of failure 

Section 11 -7 

11.33. A cast iron disk has an inner radius a = 150 mm and 
anouter radius b = 300 mm, with material properties p = 
7200 kg/m3, E = 70 GPa, v = 0.25, and ultimate strength ou = 
170 MPa. Determine the speed of revolution (in rpm) of the 
disk at which the maximum stress is equal to the ultimate 
strength. 

11.34. In the proof test of a grinding wheel, the rotational speed 
is increased until the wheel bursts. The grinding wheel is a disk 
of inner radius a = 100 mm and an outer radius of b = 400 mm. 
The wheel is bonded to a steel shaft at the inner radius and has 
material properties p = 2000 kg/m3, E = 12 GPa, v = 0.32, and 
ultimate strength ou = 20 MPa. Determine the allowable rota- 
tional speed of the wheel using a safety factor of 2.0. Assume 
that the steel shaft is rigid and that there are no forces acting on 
the wheel at the outer radius. 

11.35. A disk of inner radius a and outer radius b is subjected to 
an angular velocity w. The disk is constrained at r = a, so that 
the radial displacement u is zero. At r = b, the disk is free of 
applied forces. Derive formulas for the constants of integration 
C ,  and C2 (see Eqs. 11.47, 11.49, and 11.50), as functions of w, 
the material properties p, E, and v and the radii a and b. Note 
that with C ,  and C2, the displacement u and stresses or, and 
oBB are also given as functions of r, etc. 

11.36. A solid disk of radius b is subjected to an angular veloc- 
ity w [rad/s]. The disk has mass density p, modulus of elasticity 

der has inner and outer radii of 30 and 60 mm, respectively, and 
is made of a steel with yield stress Y,  = 600 MPa. Determine the 
fully plastic pressure for the composite cylinder if both steels 
obey the von Mises criterion. 

11.28. The closed cylinder in Example 11.6 is made of a Tresca 
material instead of a von Mises material. Obtain the solution for 
the Tresca material. 

11.31. The cylinder in Problem 11.29 is subjected to a tempera- 
ture difference of To = 50°C and an internal pressure p ,  = 
100 MPa. Determine the stress components at the inner radius. 
11.32. A closed brass (Y = 240 MPa, E = 96.5 GPa, v = 0.35, 
and a = 0.000020/°C) cylinder has an inside diameter of 
70 mm and an outside diameter of 150 mm. It is subjected to a 
temperature difference To = T, - Tb = 70°C. 
a. Determine the magnitude p ,  of internal pressure required to 
initiate yield in the cylinder. 
b. Determine the magnitude p2  of external pressure required to 
initiate yield. 
c. Repeat parts a and b for the case To = 0. Use the maximum 
shear-stress criterion of failure. 

E, Poisson's ratio v, and yield strength Y. Temperature effects 
are negligible. 
a. Determine the angular velocity my at which the disk yields 
initially. Assume that o,, = 0 and that the maximum shear- 
stress criterion applies. 
b. Determine the angular velocity w p  at which the disk 
becomes fully plastic. Compare w p  to wy. 
c. After the disk becomes fully plastic, it is returned to rest. 
Determine the resulting residual stresses in the disk. 
11.37. The solid disk of Example 11.7 is subjected to an angu- 
lar velocity w [rad/s] and is also exposed to a temperature 
change 

T = To('-:) 

where To is a positive constant. 
a. Determine the additional stresses or, and ose resulting 
from T as functions of To, b, and r. 
b. Determine whether or not the stresses at r = 0 and r = b are 
increased because of T. 
11.38. A solid steel disk in a state of plane stress (o,, = 0) has 
an outer radius b = 400 mm and has properties p = 7850 kg/m3, 
E = 200 GPa, v = 0.29, and Y = 620 MPa. The disk is subjected 
to an angular velocity w [rad/s], where w y  I w < wp. w y  is the 
angular velocity at yield, and w p  is the angular velocity at 

T T 
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which the disk is fully plastic (see Example 11.8). When w 
increases beyond my, a plastic zone develops at the center and 
progresses to r = rp. As w increases to wp the disk becomes 
fully plastic, that is, rp + b. Determine the location r = rp of 
the interface between the elastic and plastic regions as a function 
of w . Hint: Continuity of stresses at r = rp requires that 

11.39. A thin solid disk of radius b rotates with angular velocity 
0 [rad/s] about an axis perpendicular to the disk at its center 
r = 0. It is also subjected to a temperature field T = Tor/b, where 
To is a constant. 
a. Determine the stresses or, and in the disk in terms of To 
and w. 
b. Determine the increase of its radius b in terms of To and w. 
11.40. In Problem 11.38, let the disk have a central hole of radius 
a = 100 mrn. Determine the value of w for which the elastic- 
plastic interface occurs at the mean radius rp = (a + b)/2 = 250 mrn. 

where at r = r,, r i  is in the elastic region and r i  is in the plas- 
tic region. Also, the stresses in the elastic region are given by 
Eqs. 11.49 and 11.50. 

REFERENCES 

BORESI, A. P., and CHONG, K. P. (2000). Elasticity in Engineering 
Mechanics, 2nd ed. New York Wiley-Interscience. 

SIDEBOTTOM, 0. M., CHU, S. C., and LAMBA, H. S. (1976). Unloading 
of Thick-Walled Cylinders That Have Been Plastically Deformed. 
Exper. Mech., 16(12): 454-460. 


	Cover
	Title Page
	Copyright Page
	Preface
	Dedication Page
	CONTENTS
	1. Introduction
	1.1 Review of Elementary Mechanics of Materials
	1.1.1 Axially Loaded Members
	1.1.2 Torsionally Loaded Members
	1.1.3 Bending of Beams

	1.2 Methods of Analysis
	1.2.1 Method of Mechanics of Materials
	1.2.2 Method of Continuum Mechanics and the Theory of Elasticity
	1.2.3 Deflections by Energy Methods

	1.3 Stress-Strain Relations
	1.3.1 Elastic and Inelastic Response of a Solid
	1.3.2 Material Properties

	1.4 Failure and Limits on Design
	1.4.1 Modes of Failure

	Problems
	References

	2. Theories of Stress and Strain
	2.1 Definition of Stress at a Point
	2.2 Stress Notation
	2.3 Symmetry of the Stress Array and Stress on an Arbitrarily Oriented Plane
	2.3.1 Symmetry of Stress Components
	2.3.2 Stresses Acting on Arbitrary Planes
	2.3.3 Normal Stress and Shear Stress on an Oblique Plane

	2.4 Transformation of Stress, Principal Stresses, and other Properties
	2.4.1 Transformation of Stress
	2.4.2 Principal Stresses
	2.4.3 Principal Values and Directions
	2.4.4 Octahedral Stress
	2.4.5 Mean and Deviator Stresses
	2.4.6 Plane Stress
	2.4.7 Mohr's Circle in Two Dimensions
	2.4.8 Mohr's Circles in Three Dimensions

	2.5 Differential Equations of Motion of a Deformable Body
	2.5.1 Specialization of Equations 2.46

	2.6 Deformation of a Deformable Body
	2.7 Strain Theory, Transformation of Strain, and Principal Strains
	2.7.1 Strain of a Line Element
	2.7.2 Final Direction of a Line Element
	2.7.3 Rotation between Two Line Elements (Definition of Shear Strain)
	2.7.4 Principal Strains

	2.8 Small-Displacement Theory
	2.8.1 Strain Compatibility Relations
	2.8.2 Strain-Displacement Relations for Orthogonal Curvilinear Coordinates

	2.9 Strain Measurement and Strain Rosettes
	Problems
	References

	3. Linear Stress-Strain-Temperature Relations
	3.1 First Law of Thermodynamics, Internal-Energy Density, and Complementary Internal-Energy Density
	3.1.1 Elasticity and Internal-Energy Density
	3.1.2 Elasticity and Complementary Internal-Energy Density

	3.2 Hooke's Law Anisotropic Elasticity
	3.3 Hooke's Law Isotropic Elasticity
	3.3.1 Isotropic and Homogeneous Materials
	3.3.2 Strain-Energy Density of Isotropic Elastic Materials

	3.4 Equations of Thermoelasticity for Isotropic Materials
	3.5 Hooke's Law Orthotropic Materials
	Problems
	References

	4. Inelastic Material, Behavior
	4.1 Limitations on the Use of Uniaxial Stress-Strain Data
	4.1.1 Rate of Loading
	4.1.2 Temperature Lower Than Room Temperature
	4.1.3 Temperature Higher Than Room Temperature
	4.1.4 Unloading and Load Reversal
	4.1.5 Multiaxial States of Stress

	4.2 Nonlinear Material Response
	4.2.1 Models of Uniaxial Stress-Strain Curves

	4.3 Yield Criteria: General Concepts
	4.3.1 Maximum Principal Stress Criterion
	4.3.2 Maximum Principal Strain Criterion
	4.3.3 Strain-Energy Density Criterion

	4.4 Yielding of Ductile Metals
	4.4.1 Maximum Shear-Stress (Tresca) Criterion
	4.4.2 Distortional Energy Density (von Mises) Criterion
	4.4.3 Effect of Hydrostatic Stress and the pi-Plane

	4.5 Alternative Yield Criteria
	4.5.1 Mohr-Coulomb Yield Criterion
	4.5.2 Drucker-Prager Yield Criterion
	4.5.3 Hill's Criterion for Orthotropic Materials

	4.6 General Yielding
	4.6.1 Elastic-Plastic Bending
	4.6.2 Fully Plastic Moment
	4.6.3 Shear Effect on Inelastic Bending
	4.6.4 Modulus of Rupture
	4.6.5 Comparison of Failure Criteria
	4.6.6 Interpretation of Failure Criteria for General Yielding

	Problems
	References

	5. Applications of Energy Methods
	5.1 Principle of Stationary Potential Energy
	5.2 Castigliano's Theorem on Deflections
	5.3 Castigliano's Theorem on Deflections for Linear Load-Deflection Relations
	5.3.1 Strain Energy U_N for Axial Loading
	5.3.2 Strain Energies U_M and U_S for Beams
	5.3.3 Strain Energy U_T for Torsion

	5.4 Deflections of Statically Determinate Structures
	5.4.1 Curved Beams Treated as Straight Beams
	5.4.2 Dummy Load Method and Dummy Unit Load Method

	5.5 Statically Indeterminate Structures
	5.5.1 Deflections of Statically Indeterminate Structures

	Problems
	References

	6. Torsion
	6.1 Torsion of a Prismatic Bar of Circular Cross Section
	6.1.1 Design of Transmission Shafts

	6.2 Saint-Venant's Semiinverse Method
	6.2.1 Geometry of Deformation
	6.2.2 Stresses at a Point and Equations of Equilibrium
	6.2.3 Boundary Conditions

	6.3 Linear Elastic Solution
	6.3.1 Elliptical Cross Section
	6.3.2 Equilateral Triangle Cross Section
	6.3.3 Other Cross Sections

	6.4 The Prandtl Elastic-Membrane (Soap-Film) Analogy
	6.4.1 Remark on Reentrant Corners

	6.5 Narrow Rectangular Cross Section
	6.5.1 Cross Sections Made Up of Long Narrow Rectangles

	6.6 Torsion of Rectangular Cross Section Members
	6.7 Hollow Thin-Wall Torsion Members and Multiply Connected Cross Sections
	6.7.1 Hollow Thin-Wall Torsion Member Having Several Compartments

	6.8 Thin-Wall Torsion Members with Restrained Ends
	6.8.1 I-Section Torsion Member Having One End Restrained from Warping
	6.8.2 Various Loads and Supports for Beams in Torsion

	6.9 Numerical Solution of the Torsion Problem
	6.10 Inelastic Torsion: Circular Cross Sections
	6.10.1 Modulus of Rupture in Torsion
	6.10.2 Elastic-Plastic and Fully Plastic Torsion
	6.10.3 Residual Shear Stress

	6.11 Fully Plastic Torsion: General Cross Sections
	Problems
	References

	7. Bending of Straight Beams
	7.1 Fundamentals of Beam Bending
	7.1.1 Centroidal Coordinate Axes
	7.1.2 Shear Loading of a Beam and Shear Center Defined
	7.1.3 Symmetrical Bending
	7.1.4 Nonsymmetrical Bending
	7.1.5 Plane of Loads: Symmetrical and Nonsymmetrical Loading

	7.2 Bending Stresses in Beams Subjected to Nonsymmetrical Bending
	7.2.1 Equations of Equilibrium
	7.2.2 Geometry of Deformation
	7.2.3 Stress-Strain Relations
	7.2.4 Load-Stress Relation for Nonsymmetrical Bending
	7.2.5 Neutral Axis
	7.2.6 More Convenient Form for the Flexure Stress sigma_zz

	7.3 Deflections of Straight Beams Subjected to Nonsymmetrical Bending
	7.4 Effect of Inclined Loads
	7.5 Fully Plastic Load for Nonsymmetrical Bending
	Problems
	Reference

	8. Shear Center for Thin-Wall Beam Cross Sections
	8.1 Approximations for Shear in Thin-Wall Beam Cross Sections
	8.2 Shear Flow in Thin-Wall Beam Cross Sections
	8.3 Shear Center for a Channel Section
	8.4 Shear Center of Composite Beams Formed from Stringers and Thin Webs
	8.5 Shear Center of Box Beams
	Problems
	Reference

	9. Curved Beams
	9.1 Introduction
	9.2 Circumferential Stresses in a Curved Beam
	9.2.1 Location of Neutral Axis of Cross Section

	9.3 Radial Stresses in Curved Beams
	9.3.1 Curved Beams Made from Anisotropic Materials

	9.4 Correction of Circumferential Stresses in Curved Beams Having I, T, or Similar Cross Sections
	9.4.1 Bleich's Correction Factors

	9.5 Deflections of Curved Beams
	9.5.1 Cross Sections in the Form of an I, T, etc.

	9.6 Statically Indeterminate Curved Beams: Closed Ring Subjected to a Concentrated Load
	9.7 Fully Plastic Loads for Curved Beams
	9.7.1 Fully Plastic versus Maximum Elastic Loads for Curved Beams

	Problems
	References

	10. Beams on Elastic Foundations
	10.1 General Theory
	10.2 Infinite Beam Subjected to a Concentrated Load: Boundary Conditions
	10.2.1 Method of Superposition
	10.2.2 Beam Supported on Equally Spaced Discrete Elastic Supports

	10.3 Infinite Beam Subjected to a Distributed Load Segment
	10.3.1 Uniformly Distributed Load
	10.3.2 beta L' Less-Than or Equal to pi
	10.3.3 beta L' Rightwards Arrow Infinity
	10.3.4 Intermediate Values of beta L'
	10.3.5 Triangular Load

	10.4 Semiinfinite Bean Subjected to Loads at its End
	10.5 Semiinfinite Beam with Concentrated Load near its End
	10.6 Short Beams
	10.7 Thin-Wall Circular Cylinders
	Problems
	References

	11. The Thick- Wall Cylinder
	11.1 Basic Relations
	11.1.1 Equation of Equilibrium
	11.1.2 Strain-Displacement Relations and Compatibility Condition
	11.1.3 Stress-Strain-Temperature Relations
	11.1.4 Material Response Data

	11.2 Stress Components at Sections Far from Ends for a Cylinder with Closed Ends
	11.2.1 Open Cylinder

	11.3 Stress Components and Radial Displacement for Constant Temperature
	11.3.1 Stress Components
	11.3.2 Radial Displacement for a Closed Cylinder
	11.3.3 Radial Displacement for an Open Cylinder

	11.4 Criteria of Failure
	11.4.1 Failure of Brittle Materials
	11.4.2 Failure of Ductile Materials
	11.4.3 Material Response Data for Design
	11.4.4 Ideal Residual Stress Distributions for Composite Open Cylinders

	11.5 Fully Plastic Pressure and Autofrettage
	11.6 Cylinder Solution for Temperature Change Only
	11.6.1 Steady-State Temperature Change (Distribution)
	11.6.2 Stress Components

	11.7 Rotating Disks of Constant Thickness
	Problems
	References

	12. Elastic and Inelastic Stability of Columns
	12.1 Introduction to the Concept of Column Buckling
	12.2 Deflection Response of Columns to Compressive Loads
	12.2.1 Elastic Buckling of an Ideal Slender Column
	12.2.2 Imperfect Slender Columns

	12.3 The Euler Formula for Columns with Pinned Ends
	12.3.1 The Equilibrium Method
	12.3.2 Higher Buckling Loads; n > 1
	12.3.3 The Imperfection Method
	12.3.4 The Energy Method

	12.4 Euler Buckling of Columns with Linearly Elastic End Constraints
	12.5 Local Buckling of Columns
	12.6 Inelastic Buckling of Columns
	12.6.1 Inelastic Buckling
	12.6.2 Two Formulas for Inelastic Buckling of an Ideal Column
	12.6.3 Tangent-Modulus Formula for an Inelastic Buckling Load
	12.6.4 Direct Tangent-Modulus Method

	Problems
	References

	13. Flat Plates
	13.1 Introduction
	13.2 Stress Resultants in a Flat Plate
	13.3 Kinematics: Strain-Displacement Relations for Plates
	13.3.1 Rotation of a Plate Surface Element

	13.4 Equilibrium Equations for Small-Displacement Theory of Flat Plates
	13.5 Stress-Strain-Temperature Relations for Isotropic Elastic Plates
	13.5.1 Stress Components in Terms of Tractions and Moments
	13.5.2 Pure Bending of Plates

	13.6 Strain Energy of a Plate
	13.7 Boundary Conditions for Plates
	13.8 Solution of Rectangular Plate Problems
	13.8.1 Solution of nabla^2 nabla^2 w = p/D for a Rectangular Plate
	13.8.2 Westergaard Approximate Solution for Rectangular Plates: Uniform Load
	13.8.3 Deflection of a Rectangular Plate: Uniformly Distributed Load

	13.9 Solution of Circular Plate Problems
	13.9.1 Solution of nabla^2 nabla^2 w = p/D for a Circular Plate
	13.9.2 Circular Plates with Simply Supported Edges
	13.9.3 Circular Plates with Fixed Edges
	13.9.4 Circular Plate with a Circular Hole at the Center
	13.9.5 Summary for Circular Plates with Simply Supported Edges
	13.9.6 Summary for Circular Plates with Fixed Edges
	13.9.7 Summary for Stresses and Deflections in Flat Circular Plates with Central Holes
	13.9.8 Summary for Large Elastic Deflections of Circular Plates: Clamped Edge and Uniformly Distributed Load
	13.9.9 Significant Stress When Edges are Clamped
	13.9.10 Load on a Plate When Edges are Clamped
	13.9.11 Summary for Large Elastic Deflections of Circular Plates: Simply Supported Edge and Uniformly Distributed Load
	13.9.12 Rectangular or other Shaped Plates with Large Deflections

	Problems
	References

	14. Stress Concentrations
	14.1 Nature of a Stress Concentration Problem and the Stress Concentration Factor
	14.2 Stress Concentration Factors: Theory of Elasticity
	14.2.1 Circular Hole in an Infinite Plate under Uniaxial Tension
	14.2.2 Elliptic Hole in an Infinite Plate Stressed in a Direction Perpendicular to the Major Axis of the Hole
	14.2.3 Elliptical Hole in an Infinite Plate Stressed in the Direction Perpendicular to the Minor Axis of the Hole
	14.2.4 Crack in a Plate
	14.2.5 Ellipsoidal Cavity
	14.2.6 Grooves and Holes

	14.3 Stress Concentration Factors: Combined Loads
	14.3.1 Infinite Plate with a Circular Hole
	14.3.2 Elliptical Hole in an Infinite Plate Uniformly Stressed in Directions of Major and Minor Axes of the Hole
	14.3.3 Pure Shear Parallel to Major and Minor Axes of the Elliptical Hole
	14.3.4 Elliptical Hole in an Infinite Plate with Different Loads in Two Perpendicular Directions
	14.3.5 Stress Concentration at a Groove in a Circular Shaft

	14.4 Stress Concentration Factors: Experimental Techniques
	14.4.1 Photoelastic Method
	14.4.2 Strain-Gage Method
	14.4.3 Elastic Torsional Stress Concentration at a Fillet in a Shaft
	14.4.4 Elastic Membrane Method: Torsional Stress Concentration
	14.4.5 Beams with Rectangular Cross Sections

	14.5 Effective Stress Concentration Factors
	14.5.1 Definition of Effective Stress Concentration Factor
	14.5.2 Static Loads
	14.5.3 Repeated Loads
	14.5.4 Residual Stresses
	14.5.5 Very Abrupt Changes in Section: Stress Gradient
	14.5.6 Significance of Stress Gradient
	14.5.7 Impact or Energy Loading

	14.6 Effective Stress Concentration Factors: Inelastic Strains
	14.6.1 Neuber's Theorem

	Problems
	References

	15. Fracture Mechanics
	15.1 Failure Criteria and Fracture
	15.1.1 Brittle Fracture of Members Free of Cracks and Flaws
	15.1.2 Brittle Fracture of Cracked or Flawed Members

	15.2 The Stationary Crack
	15.2.1 Blunt Crack
	15.2.2 Sharp Crack

	15.3 Crack Propagation and the Stress Intensity Factor
	15.3.1 Elastic Stress at the Tip of a Sharp Crack
	15.3.2 Stress Intensity Factor: Definition and Derivation
	15.3.3 Derivation of Crack Extension Force G
	15.3.4 Critical Value of Crack Extension Force

	15.4 Fracture: Other Factors
	15.4.1 Elastic-Plastic Fracture Mechanics
	15.4.2 Crack-Growth Analysis
	15.4.3 Load Spectra and Stress History
	15.4.4 Testing and Experimental Data Interpretation

	Problems
	References

	16. Fatigue: Progressive Fracture
	16.1 Fracture Resulting from Cyclic Loading
	16.1.1 Stress Concentrations

	16.2 Effective Stress Concentration Factors: Repeated Loads
	16.3 Effective Stress Concentration Factors: Other Influences
	16.3.1 Corrosion Fatigue
	16.3.2 Effect of Range of Stress
	16.3.3 Methods of Reducing Harmful Effects of Stress Concentrations

	16.4 Low Cycle Fatigue and the epsilon-N Relation
	16.4.1 Hysteresis Loop
	16.4.2 Fatigue-Life Curve and the epsilon-N Relation

	Problems
	References

	17. Contact Stresses
	17.1 Introduction
	17.2 The Problem of Determining Contact Stresses
	17.3 Geometry of the Contact Surface
	17.3.1 Fundamental Assumptions
	17.3.2 Contact Surface Shape after Loading
	17.3.3 Justification of Eq. 17.1
	17.3.4 Brief Discussion of the Solution

	17.4 Notation and Meaning of Terms
	17.5 Expressions for Principal Stresses
	17.6 Method of Computing Contact Stresses
	17.6.1 Principal Stresses
	17.6.2 Maximum Shear Stress
	17.6.3 Maximum Octahedral Shear Stress
	17.6.4 Maximum Orthogonal Shear Stress
	17.6.5 Curves for Computing Stresses for Any Value of B/A

	17.7 Deflection of Bodies in Point Contact
	17.7.1 Significance of Stresses

	17.8 Stress for Two Bodies in Line Contact: Loads Normal to Contact Area
	17.8.1 Maximum Principal Stresses: k = 0
	17.8.2 Maximum Shear Stress: k = 0
	17.8.3 Maximum Octahedral Shear Stress: k = 0

	17.9 Stresses for Two Bodies in Line Contact: Loads Normal and Tangent to Contact Area
	17.9.1 Roller on Plane
	17.9.2 Principal Stresses
	17.9.3 Maximum Shear Stress
	17.9.4 Maximum Octahedral Shear Stress
	17.9.5 Effect of Magnitude of Friction Coefficient
	17.9.6 Range of Shear Stress for One Load Cycle

	Problems
	References

	18. Creep: Time-Dependent Deformation
	18.1 Definition of Creep and the Creep Curve
	18.2 The Tension Creep Test for Metals
	18.3 One-Dimensional Creep Formulas for Metals Subjected to Constant Stress and Elevated Temperature
	18.4 One-Dimensional Creep of Metals Subjected to Variable Stress and Temperature
	18.4.1 Preliminary Concepts
	18.4.2 Similarity of Creep Curves
	18.4.3 Temperature Dependency
	18.4.4 Variable Stress and Temperature

	18.5 Creep under Multiaxial States of Stress
	18.5.1 General Discussion

	18.6 Flow Rule for Creep of Metals Subjected to Multiaxial States of Stress
	18.6.1 Steady-State Creep
	18.6.2 Nonsteady Creep

	18.7 An Application of Creep of Metals
	Summary

	18.8 Creep of Nonmetals
	18.8.1 Asphalt
	18.8.2 Concrete
	18.8.3 Wood

	References

	19 - The Finite Element Method
	19.1 - Introduction
	19.2 - Formulation for Plane Elasticity
	19.3 - The Bilinear Rectangle
	19.4 - The Linear Isoparametric Quadrilateral
	19.5 - The Plane Frame Element
	19.6 - Closing Remarks
	Problems
	References

	Appendices
	Appendix A: Average Mechanical Properties of Selected Materials
	Appendix B: Second Moment (Moment of Inertia) of a Plane Area
	B.1 Moments of Inertia of a Plane Area
	B.2 Parallel Axis Theorem
	B.3 Transformation Equations for Moments and Products of Inertia
	B.3.1 Principal Axes of Inertia

	Problems

	Appendix C: Properties of Steel Cross Sections

	Author Index
	Subject Index

